Project Evolution \& Estimation : Cost

 benefit analysis ,cash flowforecasting, cost benefit evolution techniques

Cost-benefit analysis

- The standard way of evaluating the economic benefits of any project.
- Consist of two steps:-
a) Identifying and estimating all of the costs and benefits of carrying out the project and operating the delivered application.
b) Expressing these costs and benefits in common units.

Cost-benefit analysis(cont'd)

- Categorizing cost:-
a) Development costs:- salaries and other employment costs of the staff involved in the development project and all associated costs.
b) Setup costs:- costs of putting system into place, cost of new hardware, equipment, file conversion, recruitment and staff training.
c) Operational costs:- costs of operating the system once it has been installed.

Cash Flow Forecasting

- Indicate when expenditure and income will take place.
- Need to revise the forecast from time to time

Cash Flow Forecasting Example

Year	Project 1	Project 2	Project 3	Project 4
0	$-100,000$	$-1,000,000$	$-100,000$	$-120,000$
1	10,000	200,000	30,000	30,000
2	10,000	200,000	30,000	30,000
3	20,000	200,000	30,000	30,000
4	20,000	200,000	20,000	25,000
5	100,000	350,000	20,000	50,000
Net Profit	60,000	150,000	30,000	45,000
Payback	5	5	4	4
ROI	12%	4%	10%	11%

Cost-benefit evaluation techniques

- Net Profit
difference between the total costs and the total income over the life of the project.
- Payback period the time taken to break even or pay back the initial investment.
- Return on investment also known as the accounting rate of return(ARR).

$$
=\frac{\text { average annual profit }}{\text { totalinvestment }} \times 100 \%
$$

Cost-benefit evaluation techniques

- It takes into account the profitability of a project and the timing of the cash flows.

$$
\text { Present Value }=\frac{\text { value in y ear } n}{(1+r)^{n}}
$$

- where n is the number of years into the future that the cash flow occurs.
- r is the discount rate
- Discount rate is the annual rate by which we discount future earning
- e.g. If discount rate is 10% and the return of an investment in a year is $\$ 110$, the present value of the investment is $\$ 100$.

Issues in NPV

- Choosing an appropriate discount rate is difficult
- Ensuring that the rankings of projects are not sensitive to small changes in discount rate

Cost-benefit evaluation techniques

- Internal rate of return
a) Provide a profitability measure as a percentage return that is directly comparable with interest rate.
a) Calculated as the percentage discount rate that would produce a NPV of zero.
b) Calculated using a spreadsheet or other computer program that provides functions for calculating the IRR, for e.g., Microsoft Excel.

Cost-benefit Evaluation Techniques IRR (cont'd)

Net Present Value(\$)

